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ABSTRACT 

This paper will motivate alternative combining schemes, provide a statistic 
for comparing alternative combinations out-of-sample and provide an 
example demonstrating these techniques. The evidence suggests the 
proposed procedures are likely to do no worse than other approaches and 
promise to do better under circumstances commonly encountered with 
economic data: integrated series and contaminated data. 
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INTRODUCTION 

Since the Bates-Granger (1969) seminal paper on combining forecasts, new work in the area 
has come in fits and starts. The Granger-Ramanathan (1984) paper initiated the recent flurry 
of work, including that of Clemen (1986), Diebold and Pauly (1986), and Holden and Peel 
(1986). Granger and Ramanathan show that the variance-covariance formula of Bates and 
Granger implied a regression of the forecasted variable on the forecasts with the sum of the 
forecast coefficients being restricted to 1 and the intercept term suppressed. It mayor may not 
be appropriate to impose these restrictions in particular cases. Of course, the within-sample 
mean squared error is reduced when they are not, but the results of Clemen (1986) and Holden 
and Peel (1986) demonstrate a possible reduction in post-sample mean squared forecast error 
when the restrictions are imposed. 

Granger and Ramanathan also point out that the combined forecast's error may be serially 
correlated, even when the individual forecasts' errors are not. Improved forecasts may result 
from a dynamic combination which takes account of this possibility, as in Diebold (1985). 

In the spirit of Granger and Ramanathan, this paper views the task of forecast combination 
as a statistical problem for which standard statistical techniques and approaches are 
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appropriate. Specifically, this motivates three observations: 

(1) Forecasted data are often integrated (non-stationary), and this has implications for the 
form of a linear combination of the forecasts. 

(2) Robust estimation of the combining weights may prove fruitful. 
(3) A ranking rule alternative to minimum mean square error is suggested by considering 

various combining schemes as statistical models of the variable to be forecasted. 

FORECASTING INTEGRATED SERIES 

When a series Xt must be differenced d times before it appears to be stationary it is said to be 
integrated of order d, denoted Xt - I( d). A vector Xt = (XIt, X2/, ... , Xnt)' is I(d) if each of its 
components is. In general, linear combinations of led) variables are also I(d), but it is possible 
that there exist one or more linear combinations that are integrated of lower order. When this 
happens, Xt is said to be co-integrated. 

As a simple example, suppose Xt is generated by 

XIt = XI,t-1 + ['It 
X2t = XIt + ['2t 

(1) 

where ['t = (['It, ['2t)' is a white-noise process. Then both components of Xt are l(l) but the linear 
combination 

XIt - X2t = ['It - ['21 

is 1(0), 
If Xt is 1(1) but there exists a full-rank n x r matrix 0' such that 

ZI = (z It, , .. , Zrr)' = 0" XI (2) 

is 1(0), then XI is co-integrated with r linearly independent co-integrating vectors 0'1,0'2, ... ,0',.. 

If XI is l(l) and co-integrated as in equation (2), Engle and Granger (1987) show that the 
underlying data-generation process has an error-correction representation 

A (B)t..xl = m + 'YZI-I + ['I (3) 

where Band t.. are the lag and differencing operators, A (0) is the n x n identity matrix, In a 
vector of constants and "I an n x r matrix of coefficients. In equation (I), 

t..X21 = XII - X2,1-1 + ['21 

= (Xl,r-I - X2,1-1) + ['II + ['21 

so that 

= (Xl,r-I - X2,t-I) + [
t.. X It] [0] [ ['II ] 

t..X21 I ['11 + ['21 

Returning to the general case, if A (B) = II{, i.e. if there are no lags of t..XI in equation (3), 

t..XII = m + 'YIIZI,I-I + 'Y12Z2,1-1 + ... + 'YlrZr,I-1 + ['II (4) 

When a forecasted variable YI is 1(1), any reasonable forecast JI should be co-integrated with 
it, with co-integrating vector (I, - I)' . If not, the forecast error YI - JI will not be stationary 
and the series and its forecast will drift increasingly apart over time, Let If;,,.], i = 1,2, ... , r 
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be a set of r forecasts of Yt+h made at time t. If Yt - 1~-h.h and Yt-h - Yt are both /(0), then so 
is 

Zi.t-h == 1~-h.h - Yt-h (5) 

For h = 1, equations (4) and (5) suggest the relation 

.1Yt = m + (3IZI.t-1 + ... + (3rZr.t-1 + Ct (6) 

or 

Yt = m + Yt-I + {31 (fI-I.1 - Yt- d + ... + {3r(f~-I.1 - Yt- d + Ct (7) 

Since 11-1.1 - Yt-I can be thought of as the jth forecaster's forecast of the change in yr, 
equation (6) can be interpreted as explaining the change in Y as a linear combination of forecasts 
of the change. This is not the same as a linear combination of forecasts of the level. When we 
rewrite equation (7) as 

Yt = m + (1 - i~ {3i)Yt-1 + i~ (3i1~-I.1 + Ct (8) 

several differences become apparent. First, when combining forecasts of an integrated series, 
a lag of the forecasted series itself should be included in the combination. Second, the 
coefficients (excepting the constant In) in regression (8) should be constrained to add to unity. 
Third, if the coefficients {(3i J sum to unity the lagged dependent variable in regression (8) drops 
out and the remaining coefficients are constrained to add to unity. If the constant term is also 
dropped the Bates-Granger combination results. Fourth, since all the variables in equation (6) 
are /(0), the t-statistics of the regressors, including the constant m, can be used to decide 
whether to retain all the forecasts in the combination. Moreover, the {Zi,t J are likely to be less 
correlated with each other than are the original forecasts, so that the t-statistics on the 
coefficients are more accurate than is normally the case when combining forecasts via 
regression. 

ROBUST ESTIMATION 

Robust estimation, such as that delivered by minimizing absolute deviations, may be useful in 
several contexts. If the conditions of the Gauss-Markov theorem are satisfied for the 
population from which the sample is drawn but the sample exhibits gross errors, least squares 
can produce estimators with arbitrarily large biases, while a robust procedure by construction 
limits the influence of any observation. However, least squares is still asymptotically the best 
linear unbiased estimator, so robust estimation techniques in this context are interesting only 
for small samples. Another context is the case of contaminated data in which the number of 
gross errors in the data is a function of the number of observations, the classical example being 
keypunch or other non-zero mean errors. In this case the Gauss-Markov assumptions fail and 
least squares produces inconsistent estimates, even in large samples. Since exercises in 
combining forecasts are commonly performed on samples of less than 50 observations, robust 
estimation procedures may be more appropriate than least squares, even if we believe that gross 
errors in forecasts are not a function of the number of observations. I 

I Non-quadratic cost functions can also lead to situations where particular robust estimators are optimal even 
asymptotically. For a fuller discussion of the appropriateness of robust procedures, see Hampel et al. (\986, pp. 
21-31). 
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RANKING FORECASTS 

The use of the mean square error criterion to rank forecasts is an accepted procedure in the 
literature on combining forecasts. This criterion is widely used in statistical analysis and permits 
no ambiguity. Its disadvantages include the unambiguous ranking it assigns and the lack of tests 
of significant differences in mean square error when models are non-nested. 

Ambiguity may be appropriate when comparing performance of combining algorithms on 
data out of the sample on which the combining weights are formed under the following 
conditions. Given two sets of combined forecasts (say, produced by least squares and least 
absolute deviations) and that the combinations incorporate the relevant information set in only 
a partly overlapping manner, neither is an optimal combined forecast for the information set 
and neither is unambiguously better than the other. In other words, both can forecast 
something the other cannot-neither 'encompasses' the other, though one will almost always 
have a smaller mean square error. 

A procedure addressing these criticisms issues from the encompassing literature. Specifically, 
a formal test of 'encompassing in forecast' of two models, as suggested by Chong and Hendry 
(1986), is suitable to rank combined forecasts out-of-sample. If both combinations incorporate 
information in only partly overlapping ways neither is ranked above the other, and tests of 
significance are immediate. In what follows the alternative combining algorithms can be 
thought of as 'models' and the 'forecasts' as the combined forecasts we are interested in 
evaluating. 

The encompassing literature provides a unifying framework for non-nested hypothesis 
testing. Chong and Hendry focus in part on evaluating alternative non-nested models for their 
relative forecasting ability. The idea of encompassing is to formalize the intuition that one 
model is better than another if it can predict what the other model will yield given a certain 
information set and the other model cannot do the same. 

The encompassing test is a test of the significance of the coefficients from a standard least 
squares regression of the forecasts being compared on the variable being forecasted. To be 
precise, if the null is model 1 encompasses model 2 in forecast, then subtract, from the variable 
being forecasted, modell's forecast, and regress this residual on the forecast from model 2. 
If model 2's forecast coefficient is insignificant at some predetermined level we do not reject 
the null that modell's forecast encompasses the other. If it is found that model 2 does not 
encompass model 1 in forecast at the same level of significance (i.e. the coefficient of model 
1 's forecast is significant), model 1 is ranked above model 2. It should be reiterated that this 
paper is testing for encompassing on out-of-sample data. 

Although seemingly incongruent, multicollinearity could lead to two forecasts apparently 
encompassing each other, since the null of the test is of encompassing and multicollinearity 
reduces the power of the test. In this case neither model would rank above the other, as neither 
forecast contains information the other does not. If no model encompasses another (both 
models' forecasts have significant coefficients in the appropriate regressions) then, again, 
neither ranks above the other. We expect a priori that the mean square error criterion will not 
contradict the ranking assigned by the encompassing criterion. 

DATA AND RELATED ISSUES 

The dependent variable data series used in this study is the total unemployment rate as a 
percentage of the civilian labor force, seasonally adjusted, for persons 16 years and over, for 
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the USA from 1948:1 to 1986:1 on a monthly basis. Two models are constructed and forecasts 
from them obtained. Details of model construction and data sources may be found in the 
Appendix. 

For both models the first fourteen observations are used only to extract the lags needed for 
the model specification. On the next 310 observations (up to 1975, approximately) the model 
parameters are estimated. Using these estimates, one-step-ahead forecasts for the next 120 
observations are made. The models at this step could be re-estimated and parameter estimates 
updated with each observation, as a forecaster in real time would do. However, the object of 
this study is not to investigate alternative modeling performance over time. It is to determine 
the relative performance of combining algorithms for given forecasts. Hence forecasts 
produced by the models, dispensing with the unpdating procedure, were judged appropriate. 

However, an updating procedure is employed in the formation of combining weights. 
Updating here is viewed as essential, as this is what an agent interested in combining would do 
with a given set of forecasts in real time. A rolling forecast window is employed, with 60 out-of­
sample forecasts used to estimate weights to make the combined forecast for the sixty-first 
period. Thus the set of 120 out-of-sample forecasts yielded 60 out-of-sample one-step combined 
forecasts for each combining rule. It is these 60 combined forecasts for each combining rule 
that are analyzed below to determine performance. Naturally, different windows could be 
chosen (say, 40 observations) which would 'still leave enough degrees of freedom to estimate 
the model parameters with reasonable precision. Alternatively, a declining weight could be 
attached to earlier observations, avoiding the truncation of a rolling window. Bates and 
Granger discuss such schemes in some detail. 

Some observations regarding the data and implications for estimation must be made here: 

(1) We know that robust procedures will outperform non-robust procedures if we have 
influential outliers. An analysis of the unemployment variable on the out-of-sample data 
points to the presence of one or two gross outliers at most. Thus we can expect less than 
significant improvements with the robust procedures. 

(2) If the data are integrated of order one the analysis outlined earlier in this paper applies. 
The data series used here appears to be integrated of order one, as the Dickey-Fuller test 
fails to reject the unit root hypothesis. 

EMPIRICAL RESULTS 

We address the most obvious question first. Is combining appropriate at all? In the period over 
which the weights are formed, the root mean squared forecast error (RMSFE) of model I is 
more than twice that of model II, casting suspicion on the usefulness of combining. However, 
the Chong and Hendry test of encompassing suggests that combining of forecasts is warranted 
here. Using White's (1982) standard errors, we can reject the hypotheses of either model I or 
model II's forecast encompassing the other. Their forecasts have {-statistics of 3.4 and 2.2, 
respectively, in the encompasing test regressions described in the previous section. The test is 
performed on the last 60 observations of the 120 out-of-sample forecasts to correspond to the 
sample on which similar encompassing tests of the combined forecasts are performed. Model 
II incorporates an interest rate term and is greatly affected by the 1980 credit controls 
experience. This is the primary cause of its large root mean squared error. 

Three combining algorithms are investigated. All are special cases of the weighted 
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combination 

Yt = ex + (30Yt-1 + (31/:-1,1 + (3zf~-I,1 (8) 

The combining schemes are (1) static unconstrained least squares {(30 = 0), (2) Bates-Granger 
constrained least squares {ex = (30 = 0, and (31 + (32 = 1) and (3) least squares with the contraints 
implied by co-integration {ex = 0, and (30 + (31 + (32 = 1). All three combinations are estimated by 
ordinary least squares, trimmed least squares (trim set at 5070, 10070 and 15070), Least absolute 
deviations, and by the Cauchy, Fair, Huber, logistic and Andrews robust estimation 
procedures. Thirty sets of combining weights in all are obtained. Since all the robust procedures 
produce similar results, only the 15070 trimmed least squares with co-integration constraint is 
reported. This is the best of the robust methods by RMSFE. 

For the procedure that was used to estimate the trimmed least squares estimators, see 
Ruppert and Carroll (1980) and their discussion of the Kroenker and Bassett estimator. A 
proper description of this is beyond the scope of this paper, but an intuitive understanding can 
be gained by constructing an asymptotically equivalent estimator. Start with a preliminary 
estimator (e.g. least squares) and find the residuals. Remove from the data those observations 
corresponding to the 15070 largest negative and 15070 largest positive residuals. Then re-estimate 
the model with least squares on the remaining data to obtain the 15070 trimmed least squares 
estimates. The other robust estimation procedures are type M estimators (i.e. they are 
generalizations of the usual maximum likelihood estimators). Instead of maximizing the 
likelihood function they minimize an alternative function of the regression residuals. For 
instance, in the case of the Cauchy, the function is 

where Ut represents the residual and c = 2.3849 provides 0.95 asymptotic efficiency on the 
standard normal distribution. The Fair makes use of 

2c2 ~ [I ~t l-ln(1 + 1 ~t I)] 
with c = 1.3998. The Huber and Andrews methods both make use of cosines and linear 
functions of the residuals. 2 

Table 1 

Standard Minimum Maximum 
Variable Mean deviation value value 

Unemployment 8.32 1.24 6.30 10.70 
Forecast I 8.38 1.26 6.11 10.88 
Forecast 2 8.22 1.23 6.03 10.66 
Average 8.30 1.25 6.07 10.77 
Least squares 8.31 1.26 6.08 10.89 
Constrained least squares 8.30 1.26 6.04 10.80 
Least squares with co-integration restrictions 8.31 1.26 6.03 10.80 
Trimmed LS (15070) with co-integration 

restrictions 8.29 1.27 6.02 10.79 

2F or a detailed description of the algorithms performing these robust estimations see Coleman et al. (1980) and 
Ruppert and Carroll (1980). 
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Table 2 

Forecast 

Forecast 1 
Forecast 2 
Average 
Least squares 
Constrained least squares 
Least squares with co-integration restrictions 
Trimmed LS (15070) with co-integration 

restrictions 

Combining Algorithms 

Root mean squared 
forecast error 

0.2158 
0.2147 
0.2106 
0.2215 
0.2163 
0.2200 

0.2130 

195 

Table 1 gives summary statistics for the out-of-sample forecast obtained using various 
estimators and Table 2 reports the root mean square one-step-ahead forecast errors for the 
same estimators as Table 1. 

Ranking by the RMSFE criterion, a simple average is preferable to all the in-sample tailored 
procedures promoted as likely candidates for out-of-sample optimal performance. Of all the 
procedures only the last performs better than the individual forecasts. 

The results of Clemen and Holden and Peel are that all their combining methods are inferior 
by the RMSFE criterion to the best of the individual forecasts, sometimes to all the individual 
forecasts. This study does produce some combined forecasts 3 that outperform both individual 
forecasts in RMSFE. 

Tests of encompassing on the out of sample data 4 show that all the combined forecasts 
encompass the individual forecasts and themselves have significant coefficients when the 
individual forecasts are tested to encompass them (i.e. they are not encompassed in turn by the 
individual forecasts). This is something arbitrary combinations of the individual forecasts are 
not guaranteed to do. Following the ranking by the encompassing procedure, all the combining 
methods are 'better' than the individual forecasts. Pairwise encompassing tests on the 
combined forecasts show each of them encompassing the others, probably due to multi­
collinearity. 

CONCLUSIONS 

Commonly encountered with economic data are integrated series and contaminated data. This 
study demonstrates that improved forecasts may be produced by incorporating co-integration 
restrictions when combining integrated forecasts. Robust procedures performed no worse than 
least squares and promise to do better. 

That procedures ranked above the individual forecasts by the encompassing procedure are 
simultaneously ranked below these by the RMSFE criterion argues most strongly against the 
appropriateness of using the RMSFE ranking procedure alone, particularly if the differences 
in RMSFE are very small. This suggests that the encompassing procedure may be profitably 
combined with the RMSFE criterion. It would be interesting to see if similar results obtained 
for recent studies in which individual forecasts performed 'better' than all combining efforts. 

lA number of the robust procedures not reported here also had smaller R:vtSFE than both the individual forecasts. 
"Within sample, an OLS combination trivially encompasses its components, since OLS residuals are orthogonal to 
independent variables. 
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APPENDIX: THE DATA AND REGRESSION RESULTS ON MODEL ESTIMATION 
PERIOD 

The first of the economic forecasts considered is generated by a model with roots in the 
literature on rational expectations. The information set used for this model includes the 
unanticipated inflation rate, lags to order four of the dependent variable (both suggested by 
Sargent in his classical macroeconomic model) and lags of two variables in addition to these. 
These variables are a measure of labor cost per unit output as a percentage of trend, seasonally 
adjusted, and the six-month commercial paper rate (model I). The second model is a simple 
autoregressive time series one having as an information set overlapping but not encompassing 
or encompassed data (model II). These two models are not suggested to be serious contributions 
to the literature investigating empirical regularities of the unemployment rate. 

The data come from the Citibase data set. The unemployment rate variable (LHUR) is the 
seasonally adjusted monthly percentage of the civilian labor force (both sexes) unemployed. Its 
ith lag is denoted Ui. The series started on January 1948; the first 14 observations are lost to 
lag generation. The term proxying for unexpected inflation as suggested by Sargent's rational 
expectations model is the lagged CPI minus the lagged time series one-step-ahead forecast of 
the CPI (LCPI). Lagged unexpected inflation is used to avoid contemporaneous correlation 
problems. The CPI series used is the seasonally unadjusted monthly all items index, normalized 
to 100 at 1967 (PZUNEW). The labor cost proxy variable is an estimate of labor cost per unit 
output as percentage of trend (PLMDT) and its ith lag is denoted LABi. The interest rate 
variable is the six-month commercial paper rate (FYCP) and its ith lag is denoted Ii. The 
regression results for models I and II are given below. 

Model I 
Analysis of variance 

Sum of Mean 
Source OF squares square F value 

Model 11 396.7534 36.06849 853.812 
Error 298 12.58873 0.04224405 
C Total 309 409.3421 

Root MSE 0.2055336 R-square 0.9692 
Dep mean 4.843548 AD] R-SQ 0.9681 

C.V. 4.24345 

Parameter Standard T for Ho: 
Variable OF estimate error Parameter = 0 

INTERCEP 0.05270638 0.6385565 0.083 
T - 0.000498957 0.0003734387 - 1.336 
VI 1.10262 0.05756616 19.154 
V2 0.1210577 0.08563636 1.414 
V3 - 0.167439 0.08579784 - 1.952 
V4 - 0.0850563 0.06074414 - 1.400 
LCP1 -0.44812 0.9155175 - 0.489 
18 0.02911755 0.01493687 1.949 
LAB1 - 0.00359161 0.002082027 - 1.725 
'LAB2 -0.004216 0.002100568 - 2.007 
LAB4 0.02862356 0.01685554 1.698 
LAB5 - 0.0204248 0.01579693 -1.293 
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Model II 
Analysis of variance 

Sum of Mean 
Source DF squares square F value 

Model 7 396.8858 56.69796 1374.624 
Error 302 12.45634 0.04124617 
C total 309 409.3421 

Root MSE 0.2030915 R-square 0.9696 
Dep mean 4.843548 AD1 R-SQ 0.9689 

c.V. 4.193032 

Parameter Standard T for Ho: 
Variable DF estimate error Parameter = 0 

INTERCEP 0.1322973 0.06102578 2.168 
VI 1.162249 0.03808071 30.521 
V3 - 0.10379 0.05545539 -1.872 
U6 -0.0716825 0.04367154 -1.641 
VIO - 0.120747 0.06673275 - 1.809 
VII 0.1846761 0.0838996 2.201 
VI2 - 0.258553 0.08372705 - 3.088 
VI3 0.1814123 0.05665458 3.202 
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